Angiogenesis and survival of cells within thick scaffolds is a major concern in tissue engineering. The purpose of this study is to increase the survival of intestinal smooth muscle cells (SMCs) in implanted tissue-engineered constructs. We incorporated 250-μm pores in multi-layered, electrospun scaffolds with a macroporosity ranging from 15% to 25% to facilitate angiogenesis. The survival of green fluorescent protein (GFP)-expressing SMCs was evaluated after 2 weeks of implantation. Whereas host cellular infiltration was similar in scaffolds with different macroporosities, blood vessel development increased with increasing macroporosity. Scaffolds with 25% macropores had the most GFP-expressing SMCs, which correlated with the highest degree of angiogenesis over 1 mm away from the outermost layer. The 25% macroporous group exceeded a critical threshold of macropore connectivity, accelerating angiogenesis and improving implanted cell survival in a tissue-engineered smooth muscle construct.