- Valdes, Phoebe;
- Henry, Kenneth;
- Fitzgerald, Michael;
- Muralidharan, Koushik;
- Ramachandran, Srinivasan;
- Goldstein, Lawrence;
- Mobley, William;
- Galasko, Douglas;
- Subramaniam, Shankar;
- Caldwell, Andrew
Non-familial Alzheimers disease (AD) occurring before 65 years of age is commonly referred to as early-onset Alzheimers disease (EOAD) and constitutes ~ 5-6% of all AD cases (Mendez et al. in Continuum 25:34-51, 2019). While EOAD exhibits the same clinicopathological changes such as amyloid plaques, neurofibrillary tangles (NFTs), brain atrophy, and cognitive decline (Sirkis et al. in Mol Psychiatry 27:2674-88, 2022; Caldwell et al. in Mol Brain 15:83, 2022) as observed in the more prevalent late-onset AD (LOAD), EOAD patients tend to have more severe cognitive deficits, including visuospatial, language, and executive dysfunction (Sirkis et al. in Mol Psychiatry 27:2674-88, 2022). Patient-derived induced pluripotent stem cells (iPSCs) have been used to model and study penetrative, familial AD (FAD) mutations in APP, PSEN1, and PSEN2 (Valdes et al. in Research Square 1-30, 2022; Caldwell et al. in Sci Adv 6:1-16, 2020) but have been seldom used for sporadic forms of AD that display more heterogeneous disease mechanisms. In this study, we sought to characterize iPSC-derived neurons from EOAD patients via RNA sequencing. A modest difference in expression profiles between EOAD patients and non-demented control (NDC) subjects resulted in a limited number of differentially expressed genes (DEGs). Based on this analysis, we provide evidence that iPSC-derived neuron model systems, likely due to the loss of EOAD-associated epigenetic signatures arising from iPSC reprogramming, may not be ideal models for studying sporadic AD.