Knowledge of aerosol physical, chemical, optical properties is essential for judging the effect that particulates have on human health, climate and visibility. The aerosol time-of-flight mass spectrometer (ATOFMS) is capable of measuring, in real-time, the size and chemical composition of atmospheric aerosols. This was exemplified by the recent deployments of the ATOFMS to Mexico City and Riverside. The ATOFMS provided rapid information about the major particle types present in the atmosphere. Industrial sources of particles, such as fine mode particles containing lead, zinc and chloride were detected in Mexico City. The rapid time response of the ATOFMS was also exploited to characterize a coarse particle concentrator used in human health effects studies. The ATOFMS showed the ability to detect changes in particle composition with a time resolution of 15 min during short 2 hour human exposure studies. As a major component of this work, an optical measurement has been added to the ATOFMS. The scattered light intensity was acquired for each sized and chemically analyzed particle. This scattering information together with the particle aerodynamic diameter, enabled the refractive index and density of the aerosol to be retrieved. This method was validated in the laboratory using different test particles such as oils, aqueous salt solutions and black carbon particles. It was found that the nozzle-type inlet does not evaporate aqueous salt particles as has been observed for aerodynamic lens inlets. These new optical and microphysical measurements were integrated into the ATOFMS for field deployment in Riverside and Mexico City. For both cities, the different mixing states were found to have unique refractive indexes and densities. A fraction of the strongly absorbing elemental carbon particles were observed to have a spherical morphology due to heavy mixing with secondary species. In addition to the quantitative refractive index and effective density measurements, qualitative information on the morphology was obtained, which, together with the refractive index, provided information on the physical state of the particle. This is the first time that the ATOFMS data has been combined with optical measurements