Geometric analogy problems remain an intriguing part of intelligence scales, which is closely correlated to many cognitive studies, such as perception, conception, memory, abstract and inductive reasoning. The problems not only target the most fundamental element --- analogy-making --- in human cognition, but also require integration of multiple components and stages: looking at the test booklet, thinking for a minute or two, and deciding the answer. Great efforts and achievements have been made to explain different individual aspects of this process. In this paper, we take a more holistic approach from the perspective of problem-solving, by modeling the entire process, from the moment the visual stimuli are received to the moment an answer is decided. Therefore, we explore how the final solution can be built upon visual inputs and necessary components that lie between the perceptual input and conceptual output. Particularly, we designed a novel similarity metric and a correspondence-finding method based on mapping and optimization. With these two basic blocks, we implemented a computational model, and report our initial results on a classical problem set.