Using angle resolved photoemission spectroscopy, we report the first band dispersions and distinct features of the bulk Fermi surface (FS) in the paramagnetic metallic phase of the prototypical metal-insulator transition material V_{2}O_{3}. Along the c axis we observe both an electron pocket and a triangular holelike FS topology, showing that both V 3d a_{1g} and e_{g}^{π} states contribute to the FS. These results challenge the existing correlation-enhanced crystal field splitting theoretical explanation for the transition mechanism and pave the way for the solution of this mystery.