- Neuditschko, Benjamin;
- King, A;
- Huang, Zhouyang;
- Janker, Lukas;
- Bileck, Andrea;
- Borutzki, Yasmin;
- Marker, Sierra;
- Gerner, Christopher;
- Wilson, Justin;
- Meier-Menches, Samuel
Target identification remains a critical challenge in inorganic drug discovery to deconvolute potential polypharmacology. Herein, we describe an improved approach to prioritize candidate protein targets based on a combination of dose-dependent chemoproteomics and treatment effects in living cancer cells for the rhenium tricarbonyl compound TRIP. Chemoproteomics revealed 89 distinct dose-dependent targets with concentrations of competitive saturation between 0.1 and 32 μM despite the broad proteotoxic effects of TRIP. Target-response networks revealed two highly probable targets of which the Fe-S cluster biogenesis factor NUBP2 was competitively saturated by free TRIP at nanomolar concentrations. Importantly, TRIP treatment led to a down-regulation of Fe-S cluster containing proteins and upregulated ferritin. Fe-S cluster depletion was further verified by assessing mitochondrial bioenergetics. Consequently, TRIP emerges as a first-in-class modulator of the scaffold protein NUBP2, which disturbs Fe-S cluster biogenesis at sub-cytotoxic concentrations in ovarian cancer cells.