We expected mitigation of the hypophagic effects of urea (U) with a coated urea (CU) product that aimed to partially shift urea supply to the post-ruminal gastrointestinal tract. Ruminal release and post-ruminal digestibility of CU was evaluated in vitro, followed by a randomised complete block experiment (54 Holstein-Friesian cows; 177 ± 72 days in milk). Soybean meal (SBM) was partially (PR) or fully (FR) replaced on an isonitrogenous basis by beet pulp and U or CU. Urea sources were included at 12 (U-PR, CU-PR) and 19 (U-FR, CU-FR) g/kg dietary dry matter (DM). Hypophagic effects were similar for U-PR and CU-PR (-11% vs. -7%), and for U-FR and CU-FR (-13% vs. -12%) compared with SBM (average 25.8 kg DM intake/d). Compared with SBM, U-PR and CU-PR reduced yields of milk (-8%) and protein (-12%), U-PR reduced yield of fat (-9%) and fat- and protein-corrected-milk (FPCM; -9%), and CU-PR tended to reduce FPCM yield (-5%). Compared with SBM, U-FR and CU-FR respectively reduced yields of milk (-21%, -22%), protein (-25%, -26%), fat (both -14%), lactose (-20%, -21%), and FPCM (-17%, -19%), and lowered N (-15%, -12%) and feed (-8%, trend, -9%) efficiency. Human-edible protein efficiency approximately doubled with U-PR and CU-PR and approximately tripled with U-FR and CU-FR compared with SBM. Milk composition and plasma urea concentration were similar between U and CU, except for a trend for a greater plasma urea concentration with U-PR compared with CU-PR. Dry matter intake patterns differed for CU-PR compared with U-PR and for CU-FR compared with U-FR, suggesting effects of urea release rate or location on feeding behaviour. Overall, replacing SBM with U or CU reduced DM intake and milk production and affected nutrient efficiencies. Coated urea influenced DM intake pattern but did not affect total DM intake or milk production compared with U.