We have previously shown that high runner (HR) mice (from a line genetically selected for increased wheel-running behavior) have distinct, genetically based, neurobiological phenotypes as compared with non-selected control (C) mice. However, developmental programming effects during early life, including maternal care and parent-of-origin-dependent expression of imprinted genes, can also contribute to variation in physical activity. Here, we used cross-fostering to address two questions. First, do HR mice have altered DNA methylation profiles of imprinted genes in the brain compared to C mice? Second, does maternal upbringing further modify the DNA methylation status of these imprinted genes? To address these questions, we cross-fostered all offspring at birth to create four experimental groups: C pups to other C dams, HR pups to other HR dams, C pups to HR dams, and HR pups to C dams. Bisulfite sequencing of 16 imprinted genes in the cortex and hippocampus revealed that the HR line had altered DNA methylation patterns of the paternally imprinted genes, Rasgrf1 and Zdbf2, as compared with the C line. Both fostering between the HR and C lines and sex modified the DNA methylation profiles for the paternally expressed genes Mest, Peg3, Igf2, Snrpn, and Impact. Ig-DMR, a gene with multiple paternal and maternal imprinted clusters, was also affected by maternal upbringing and sex. Our results suggest that differential methylation patterns of imprinted genes in the brain could contribute to evolutionary increases in wheel-running behavior and are also dependent on maternal upbringing and sex.