The nearest-neighbor chain algorithm was proposed in the eighties as a way to speed up certain hierarchical clustering algorithms. In the first part of the dissertation, we show that its application is not limited to clustering. We apply it to a variety of geometric and combinatorial problems. In each case, we show that the nearest-neighbor chain algorithm finds the same solution as a preexistent greedy algorithm, but often with an improved runtime. We obtain speedups over greedy algorithms for Euclidean TSP, Steiner TSP in planar graphs, straight skeletons, a geometric coverage problem, and three stable matching models.
In the second part, we study the stable-matching Voronoi diagram, a type of plane partition which combines properties of stable matchings and Voronoi diagrams. We propose political redistricting as an application. We also show that it is impossible to compute this diagram in an algebraic model of computation, and give three algorithmic approaches to overcome this obstacle. One of them is based on the nearest-neighbor chain algorithm, linking the two parts together.