Background
The novel COVID-19 disease has negatively impacted mortality, economic conditions, and mental health. These impacts are likely to continue after the COVID-19 pandemic ends. There are no methods for characterizing the mental health burden of the COVID-19 pandemic, and differentiating this burden from that of the prepandemic era. Accurate illness detection methods are critical for facilitating pandemic-related treatment and preventing the worsening of symptoms.Objective
We aimed to identify major themes and symptom clusters in the SMS text messages that patients send to therapists. We assessed patients who were seeking treatment for pandemic-related distress on Talkspace, which is a popular telemental health platform.Methods
We used a machine learning algorithm to identify patients' pandemic-related concerns, based on their SMS text messages in a large, digital mental health service platform (ie, Talkspace). This platform uses natural language processing methods to analyze unstructured therapy transcript data, in parallel with brief clinical assessment methods for analyzing depression and anxiety symptoms.Results
Our results show a significant increase in the incidence of COVID-19-related intake anxiety symptoms (P<.001), but no significant differences in the incidence of intake depression symptoms (P=.79). During our transcript analyses, we identified terms that were related to 24 symptoms outside of those included in the diagnostic criteria for anxiety and depression.Conclusions
Our findings for Talkspace suggest that people who seek treatment during the pandemic experience more severe intake anxiety than they did before the COVID-19 outbreak. It is important to monitor the symptoms that we identified in this study and the symptoms of anxiety and depression, to fully understand the effects of the COVID-19 pandemic on mental health.