Coastal flooding is a growing concern. Compound coastal flooding considers the joint impacts of marine and hydrologic events characterized by multiple flooding pathways (i.e., high offshore water levels, streamflow, energetic waves, precipitation) acting concurrently. Flood risks are commonly assessed using numerical models or statistical methods. Quantifying event uncertainty is critical to accurate flood risk assessment. This work develops a hybrid statistical-hydrodynamic flood modeling methodology to characterize flood mapping uncertainty in highly urbanized, tidally and wave dominated regions. Uncertainties associated with copula selection, sampling method, data record length, utilized rainfall gauge, and event choice along an isoline were considered. Univariate statistics are analyzed for individual sites and events. Conditional and joint probabilities are developed using a range of copulas, sampling methods, and hazard scenarios. Multiple copulas (Nelsen, BB1, BB5, and Roch-Alegre, Fischer-Koch) consistently passed a Cram