- Newman, Jeffrey A;
- Blazek, Jonathan;
- Chisari, Nora Elisa;
- Clowe, Douglas;
- Dell'Antonio, Ian;
- Gawiser, Eric;
- Hložek, Renée A;
- Kim, Alex G;
- Linden, Anja von der;
- Lochner, Michelle;
- Mandelbaum, Rachel;
- Medezinski, Elinor;
- Melchior, Peter;
- Sánchez, F Javier;
- Schmidt, Samuel J;
- Singh, Sukhdeep;
- Zhou, Rongpu
Community access to deep (i ~ 25), highly-multiplexed optical and
near-infrared multi-object spectroscopy (MOS) on 8-40m telescopes would greatly
improve measurements of cosmological parameters from LSST. The largest gain
would come from improvements to LSST photometric redshifts, which are employed
directly or indirectly for every major LSST cosmological probe; deep
spectroscopic datasets will enable reduced uncertainties in the redshifts of
individual objects via optimized training. Such spectroscopy will also
determine the relationship of galaxy SEDs to their environments, key
observables for studies of galaxy evolution. The resulting data will also
constrain the impact of blending on photo-z's. Focused spectroscopic campaigns
can also improve weak lensing cosmology by constraining the intrinsic
alignments between the orientations of galaxies. Galaxy cluster studies can be
enhanced by measuring motions of galaxies in and around clusters and by testing
photo-z performance in regions of high density. Photometric redshift and
intrinsic alignment studies are best-suited to instruments on large-aperture
telescopes with wider fields of view (e.g., Subaru/PFS, MSE, or GMT/MANIFEST)
but cluster investigations can be pursued with smaller-field instruments (e.g.,
Gemini/GMOS, Keck/DEIMOS, or TMT/WFOS), so deep MOS work can be distributed
amongst a variety of telescopes. However, community access to large amounts of
nights for surveys will still be needed to accomplish this work. In two
companion white papers we present gains from shallower, wide-area MOS and from
single-target imaging and spectroscopy.