Wearable tactile interfaces can enhance immersive experiences in virtual/augmented reality systems by adding tactile stimulation to the skin along with the visual and auditory information delivered to the user. We introduce a flat cone dielectric elastomer actuator (FCDEA) array that is thin, soft, and capable of producing spatiotemporally adjustable and large static-to-dynamic force in response to electric voltage signals on large areas of the skin. Integration of the FCDEA array into a photomicrosensor array enables the implementation of a wearable wireless communication haptic patch. We demonstrate that the developed haptic patch allows users to communicate tactile information in real time while maintaining conformal contact with the skin. The haptic patch can also express the topology of 3D structures and render textures of virtual objects in response to localized vibration of the FCDEA array. We expect that the developed haptic patch will provide an immersive touching experience in virtual reality and facilitate tactile communication between users in various applications.