PURPOSE:To determine the frequency, patterns, associations, and biomechanical implications of retinal and choroidal folds in papilledema due to idiopathic intracranial hypertension (IIH). METHODS:Retinal and choroidal folds were studied in patients enrolled in the IIH Treatment Trial using fundus photography (n = 165 study eyes) and spectral-domain optical coherence tomography (SD-OCT; n = 125). We examined the association between folds and peripapillary shape, retinal nerve fiber layer (RNFL) thickness, disc volume, Frisén grade, acuity, perimetric mean deviation, intraocular pressure, intracranial pressure, and refractive error. RESULTS:We identified three types of folds in IIH patients with papilledema: peripapillary wrinkles (PPW), retinal folds (RF), and choroidal folds (CF). Frequency, with photos, was 26%, 19%, and 1%, respectively; SD-OCT frequency was 46%, 47%, and 10%. At least one type of fold was present in 41% of patients with photos and 73% with SD-OCT. Spectral-domain OCT was more sensitive. Structural parameters related to the severity of papilledema were associated with PPW and RF, whereas anterior deformation of the peripapillary RPE/basement membrane layer was associated with CF and RF. Folds were not associated with vision loss at baseline. CONCLUSIONS:Folds in papilledema are biomechanical signs of stress/strain on the optic nerve head and load-bearing structures induced by intracranial hypertension. Folds are best imaged with SD-OCT. The patterns of retinal and choroidal folds are the products of a complex interplay between the degree of papilledema and anterior deformation of the load-bearing structures (sclera and possibly the lamina cribrosa), both modulated by structural geometry and material properties of the optic nerve head. (ClinicalTrials.gov number, NCT01003639.).