- Sandoval, Jose A;
- Tomilov, Alexey;
- Datta, Sandipan;
- Allen, Sonia;
- O’Donnell, Robert;
- Sears, Thomas;
- Woolard, Kevin;
- Kovalskyy, Dmytro;
- Angelastro, James M;
- Cortopassi, Gino
Glioblastoma (GBM) is an aggressive tumor of the brain, with an average post-diagnosis survival of 15 months. GBM stem cells (GBMSC) resist the standard-of-care therapy, temozolomide, and are considered a major contributor to tumor resistance. Mammalian target of rapamycin Complex 1 (mTORC1) regulates cell proliferation and has been shown by others to have reduced activity in GBMSC. We recently identified a novel chemical series of human-safe piperazine-based brain-penetrant mTORC1-specific inhibitors. We assayed the piperazine-mTOR binding strength by two biophysical measurements, biolayer interferometry and field-effect biosensing, and these confirmed each other and demonstrated a structure-activity relationship. As mTORC1 is altered in human GBMSC, and as mTORC1 inhibitors have been tested in previous GBM clinical trials, we tested the killing potency of the tightest-binding piperazines and observed that these were potent GBMSC killers. GBMSCs are resistant to the standard-of-care temozolomide therapy, but temozolomide supplemented with tight-binding piperazine meclizine and flunarizine greatly enhanced GBMSC death over temozolomide alone. Lastly, we investigated IDH1-mutated GBMSC mutations that are known to affect mitochondrial and mTORC1 metabolism, and the tight-binding meclizine provoked 'synthetic lethality' in IDH1-mutant GBMSCs. In other words, IDH1-mutated GBMSC showed greater sensitivity to the coadministration of temozolomide and meclizine. These data tend to support a novel clinical strategy for GBM, i.e., the co-administration of meclizine or flunarizine as adjuvant therapy in the treatment of GBM and IDH1-mutant GBM.