We described a method to solve deterministic and stochastic Walras equilibrium
models based on associating with the given problem a bifunction whose maxinf-points turn
out to be equilibrium points. The numerical procedure relies on an augmentation of this
bifunction. Convergence of the proposed procedure is proved by relying on the relevant
lopsided convergence. In the dynamic versions of our models, deterministic and stochastic,
we are mostly concerned with models that equip the agents with a mechanism to transfer
goods from one time period to the next, possibly simply savings, but also allows for the
transformation of goods via production