- Sun, Chen-Chen;
- Zhang, Chen-Yu;
- Duan, Jia-Xi;
- Guan, Xin-Xin;
- Yang, Hui-Hui;
- Jiang, Hui-Ling;
- Hammock, Bruce D;
- Hwang, Sung Hee;
- Zhou, Yong;
- Guan, Cha-Xiang;
- Liu, Shao-Kun;
- Zhang, Jun
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the global adult population, and no effective pharmacological treatment has been found. Products of arachidonic acid metabolism have been developed into a novel therapy for metabolic syndrome and diabetes. It has been demonstrated that protective actions of a novel dual cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) inhibitor, PTUPB, on the metabolic abnormalities. Here, we investigated the effects of PTUPB on hepatic steatosis in high-fat diet (HFD)-induced obese mice, as well as in hepatocytes in vitro. We found that PTUPB treatment reduced body weight, liver weight, liver triglyceride and cholesterol content, and the expression of lipolytic/lipogenic and lipid uptake related genes (Acc, Cd36, and Cidec) in HFD mice. In addition, PTUPB treatment arrested fibrotic progression with a decrease of collagen deposition and expression of Col1a1, Col1a3, and α-SMA. In vitro, PTUPB decreased palmitic acid-induced lipid deposition and downregulation of lipolytic/lipogenic genes (Acc and Cd36) in hepatocytes. Additionally, we found that PTUPB reduced the production of pro-inflammatory cytokines and suppressed the NLRP3 inflammasome activation in HFD mice and hepatocytes. In conclusion, dual inhibition of COX-2/sEH attenuates hepatic steatosis by inhibiting the NLRP3 inflammasome activation. PTUPB might be a promising potential therapy for liver steatosis associated with obesity.