The thesis presents two applications of evolution equations for non-commutative variables to the theory of non-commutative probability and von Neumann algebras.
In the first part, non-commutative processes $(X_t)_{t \in [0,T]}$ with boolean, free, monotone, or anti-monotone independent increments, under certain continuity and boundedness assumptions, are classified in terms of certain evolution equations for their $F$-transforms $F_{X_t}(z) = (E[(z - X_t)^{-1}])^{-1}$. This classification is done in the setting of operator-valued non-commutative probability, in which the expectation takes values in a $\mathrm{C}^*$-algebra $\mathcal{B}$ rather than $\mathbb{C}$. Thus, the $F$-transform is a function of an operator variable $z$ from (matrices over) $\mathcal{B}$, and it is understood through the theory of fully matricial or non-commutative functions, an operator-valued analogue of complex analysis. The classification of these processes generalizes previous work on the L