The quantum rotor is one of the simplest model systems in quantum mechanics, but only in recent years has theoretical work revealed general fundamental scaling laws for its decoherence. For example, a superposition of orientations decoheres at a rate proportional to the sine squared of the angle between them. Here, we observe scaling laws for rotational decoherence dynamics for the first time, using a 4 μm diameter planar rotor composed of two Paul-trapped ions. We prepare the rotational motion of the ion crystal into superpositions of angular momentum with well-defined differences ranging from 1-3ℏ, and measure the rate of decoherence. We also tune the system-environment interaction strength by introducing resonant electric field noise. The observed scaling relationships for decoherence are in excellent agreement with recent theoretical work, and are directly relevant to the growing development of rotor-based quantum applications.