Production of California table olives has declined significantly in recent years due to hand harvesting costs, often over 60% of gross return. Mechanical harvesting could sharply decrease harvest costs, increasing economic viability. Mechanical harvester efficiency is a combination of the percentage of the total fruit on a tree removed by a harvester, and the time required to do so. A comparison between an experimental canopy contact shaker and a commercial trunk shaker demonstrated low harvest efficiencies and no significant differences in harvester efficiency between the two, averaging no more than 8%. However, simultaneously combining both shaking methods increased fruit removal to an economically feasible 75% and produced better fruit quality. Combining both shaking methods increased the price per ton by 63% versus trunk shaking and 35% versus canopy shaking. These results suggest a mechanical olive harvester that simultaneously combines trunk and canopy shaking is more efficient than either shaking method alone, and, has potential for economically feasible mechanical table olive harvesting.