- Li, Rongsong;
- Beebe, Tyler;
- Jen, Nelson;
- Yu, Fei;
- Takabe, Wakako;
- Harrison, Michael;
- Cao, Hung;
- Lee, Juhyun;
- Yang, Hongbo;
- Han, Peidong;
- Wang, Kevin;
- Shimizu, Hirohito;
- Chen, Jaunian;
- Lien, Ching-Ling;
- Chi, Neil C;
- Hsiai, Tzung K
Objective
Fluid shear stress intimately regulates vasculogenesis and endothelial homeostasis. The canonical Wnt/β-catenin signaling pathways play an important role in differentiation and proliferation. In this study, we investigated whether shear stress activated angiopoietin-2 (Ang-2) via the canonical Wnt signaling pathway with an implication in vascular endothelial repair.Approach and results
Oscillatory shear stress upregulated both TOPflash Wnt reporter activities and the expression of Ang-2 mRNA and protein in human aortic endothelial cells accompanied by an increase in nuclear β-catenin intensity. Oscillatory shear stress-induced Ang-2 and Axin-2 mRNA expression was downregulated in the presence of a Wnt inhibitor, IWR-1, but was upregulated in the presence of a Wnt agonist, LiCl. Ang-2 expression was further downregulated in response to a Wnt signaling inhibitor, DKK-1, but was upregulated by Wnt agonist Wnt3a. Both DKK-1 and Ang-2 siRNA inhibited endothelial cell migration and tube formation, which were rescued by human recombinant Ang-2. Both Ang-2 and Axin-2 mRNA downregulation was recapitulated in the heat-shock-inducible transgenic Tg(hsp70l:dkk1-GFP) zebrafish embryos at 72 hours post fertilization. Ang-2 morpholino injection of Tg (kdrl:GFP) fish impaired subintestinal vessel formation at 72 hours post fertilization, which was rescued by zebrafish Ang-2 mRNA coinjection. Inhibition of Wnt signaling with IWR-1 also downregulated Ang-2 and Axin-2 expression and impaired vascular repair after tail amputation, which was rescued by zebrafish Ang-2 mRNA injection.Conclusions
Shear stress activated Ang-2 via canonical Wnt signaling in vascular endothelial cells, and Wnt-Ang-2 signaling is recapitulated in zebrafish embryos with a translational implication in vascular development and repair.