Anthracnose caused by Colletotrichum lindemuthianum is a major disease of common bean (Phaseolus vulgaris) worldwide. Yellow beans are a major market class of common bean especially in eastern and southern Africa. The Yellow Bean Collection (YBC), which is comprised of 255 genotypes, and has not been used previously in genetic studies on anthracnose, is an excellent genetic resource for understanding the extent of anthracnose resistance and its genetic architecture in the yellow bean market class. The objectives of this study were i) evaluate the YBC for resistance to races 5, 19, 39, 51, 81, 183, 1050 and 1105 of C. lindemuthianum. and ii) conduct genome-wide association analysis to identify genomic regions and candidate genes associated with resistance to C. lindemuthianum. The YBC was genotyped with 72,866 SNPs, and genome-wide association analysis was conducted using Mixed Linear Model in TASSEL. Andean and Middle American genotypes with superior levels of resistance to the eight races were identified. YBC278 was the only one among 255 genotypes that was highly resistant to all eight races. Resistance to anthracnose in the YBC was controlled by major-effect loci on chromosomes Pv01, Pv03, Pv04, Pv05 and Pv07. The genomic region on Pv01, which overlapped with the Andean locus Co-1 provided resistance to races 81, 1050 and 1105. Significant SNPs for resistance to race 39 were identified on Pv02. The genomic region on Pv04, which overlapped with known major-effect loci Co-3, Co-15, Co-16, Co-y and Co-z, provided resistance to races 5, 19, 51 and 183. Novel genomic regions for resistance to race 39 were identified on Pv05 and Pv07. Plant resistance genes (R genes) with NB-ARC and LRR domains, which occurred in clusters, were identified as positional candidate genes for genomic regions on Pv02 and Pv04.