While the high-temperature adult plant resistance gene Yr36 represents a promising source of quantitative and potentially race non-specific resistance to wheat stripe rust (causal organism Puccinia striiformis Westend. f. sp. tritici), its tight linkage (0.3 cM) with the high-grain protein content gene Gpc-B1 may hinder its introgression in certain cases, such as in soft wheat varieties requiring low grain protein content or in lines where the Gpc-B1 allele may be associated with a yield penalty. The development and registration of two donor lines, one tetraploid (Triticum turgidum L. ssp. durum; PI 656793) and one hexaploid (T. aestivum L. ssp. aestivum; PI 664549), each carrying the resistant wild emmer (T. turgidum ssp. dicoccoides) allele for Yr36 linked with the non-functional Gpc-B1 allele, are intended to overcome this potential limitation. Meiotic recombination events breaking the linkage between these two genes were discovered during the systematic screening of a population of 4,500 F2 durum plants (cv. Langdon background) used to fine map Yr36. One of the critical recombination events was selected for fixation by self-pollination and transferred to a California adapted spring hexaploid background (breeding line UC11105+10) through five generations of backcrossing. Genotypic and phenotypic data confirm the presence of Yr36 and the non-functional Gpc-B1 allele in both registered lines.