A half-Bogomol'nyi-Prasad-Sommerfeld circular Wilson loop in N=4 SU(N) supersymmetric Yang-Mills theory in an arbitrary representation is described by a Gaussian matrix model with a particular insertion. The additional entanglement entropy of a spherical region in the presence of such a loop was recently computed by Lewkowycz and Maldacena using exact matrix model results. In this paper we utilize the supergravity solutions that are dual to such Wilson loops in a representation with order N2 boxes to calculate this entropy holographically. Employing the matrix model results of Gomis, Matsuura, Okuda and Trancanelli we express this holographic entanglement entropy in a form that can be compared with the calculation of Lewkowycz and Maldacena. We find complete agreement between the matrix model and holographic calculations.