OBJECTIVE: This study aimed to clarify the mechanism by which Krüppel-like factor 12 (KLF12) affects progesterone sensitivity in endometrial cancer (EC) through the progesterone receptor PGR signaling pathway. METHODS: The relationship of KLF12 with PGR in EC patients was examined by immunohistochemistry, and the expression of KLF12 and PGR in EC cell lines was detected by real-time PCR and western blotting. Cell proliferation assay, plate clone formation, cell apoptosis assay, and cell cycle analysis were conducted to determine the impact of KLF12 intervention on progesterone therapy. CUT&Tag analysis and the dual-luciferase reporter experiment were used to determine the underlying regulatory effect of KLF12 on the PGR DNA sequence. A subcutaneous xenograft nude mouse model was established to validate the in vivo effect of KLF12 on progesterone sensitivity via PGR expression modulation. RESULTS: KLF12 demonstrated decreased progesterone sensitivity and a negative correlation with PGR expression in EC tissues. Progesterone sensitivity was increased by KLF12 deficiency through PGR overexpression, a result that could be significantly reversed by PGR downregulation. PGR was identified as a target gene of KLF12, which could directly bind to the PGR promotor region and inhibit its expression. CONCLUSION: This study is the first to investigate the effect of KLF12 expression on EC cell resistance to progesterone. Our results offer important mechanistic insight into the direct regulation of the PGR promoter region, demonstrating that KLF12 expression strongly suppressed the PGR signaling pathway and, as a result, reduced progesterone sensitivity in EC patients.