Polyketides have demonstrated their significance as therapeutics, industrial products, pesticides, and biological probes following intense study over the past decades. Tagging polyketides with a bioorthogonal functionality enables various applications such as diversification, quantification, visualization and mode-of-action elucidation. The terminal alkyne moiety, as a small, stable and highly selective clickable functionality, is widely adopted in tagging natural products. De novo biosynthesis of alkyne-tagged polyketides offers the unique advantage of reducing the background from feeding the biorthogonal moiety itself, leading to the accomplishment of in situ generation of a clickable functionality for bioorthogonal reactions. Here, we introduce several engineering strategies to apply terminal alkyne biosynthetic machinery, represented by JamABC, which produces a short terminal alkyne-bearing fatty acyl chain on a carrier protein, to functions with different downstream polyketide synthases (PKSs). Successful results in engineering type III and type I PKSs provide engineering guidelines and strategies that are applicable to additional PKSs to produce targeted alkyne-tagged metabolites for chemical and biological applications.