Exposure to air pollution during pregnancy has been linked to the risk of childhood cancer, but the evidence remains inconclusive. In the present study, we used land use regression modeling to estimate prenatal exposures to traffic exhaust and evaluate the associations with cancer risk in very young children. Participants in the Air Pollution and Childhood Cancers Study who were 5 years of age or younger and diagnosed with cancer between 1988 and 2008 were had their records linked to California birth certificates, and controls were selected from birth certificates. Land use regression-based estimates of exposures to nitric oxide, nitrogen dioxide, and nitrogen oxides were assigned based on birthplace residence and temporally adjusted using routine monitoring station data to evaluate air pollution exposures during specific pregnancy periods. Logistic regression models were adjusted for maternal age, race/ethnicity, educational level, parity, insurance type, and Census-based socioeconomic status, as well as child's sex and birth year. The odds of acute lymphoblastic leukemia increased by 9%, 23%, and 8% for each 25-ppb increase in average nitric oxide, nitrogen dioxide, and nitrogen oxide levels, respectively, over the entire pregnancy. Second- and third-trimester exposures increased the odds of bilateral retinoblastoma. No associations were found for annual average exposures without temporal components or for any other cancer type. These results lend support to a link between prenatal exposure to traffic exhaust and the risk of acute lymphoblastic leukemia and bilateral retinoblastoma.