Medial proximal sesamoid bones (PSBs) from Thoroughbred racehorses that did (Case) or did not (Control) experience unilateral biaxial PSB fracture were evaluated for bone volume fraction (BVF), apparent mineral density (AMD), tissue mineral density (TMD), and microdamage in Case fractured, Case contralateral limb intact, and Control bones. A majority of Case bones had a subchondral lesion with high microdamage density, and low BVF, AMD, and TMD. Lesion microdamage and densitometric measures were associated with training history by robust linear regression. Exercise intensity was negatively related to BVF (0.07 ≤ R2 ≤ 0.12) and positively related to microcrack areal density (0.21 ≤ R2 ≤ 0.29) in the lesion; however, in an undamaged site, the relationships were opposite in direction. Regardless of location, TMD decreased with event frequency for both Case and Control, suggesting increased bone remodeling with exercise. Measures of how often animals were removed from active training (layups) predicted a decrease in TMD, AMD, BVF, and microdamage at regions away from the lesion site. A steady-state compartment model was used to organize the differences in the correlations between variables within the data set. The overall conclusions are that at the osteopenic lesion site, repair of microdamage by remodeling was not successful (e.g., lower bone mass, increased damage, and lower mineralization) but that in regions away from the lesion remodeling successfully controlled damage (e.g., higher bone mass, less microdamage, and lower mineralization).