- Ranasinghe, Subhani W.;
- Nishii, Kanae;
- Möller, Michael;
- Atkins, Hannah J.;
- Clark, John L.;
- Perret, Mathieu;
- Kartonegoro, Abdulrokhman;
- Gao, Lian-Ming;
- Middleton, David J.;
- Milne, Richard I.
The Gesneriaceae consists of around 150 genera and c. 3750 species with a predominantly tropical and subtropical distribution across all continents. Although previous studies have proposed an American origin of Gesneriaceae, the biogeographic history of this pantropical plant family is still unclear, particularly in the Old World. To address this, we assembled the most comprehensively sampled matrix of Gesneriaceae with 143 Gesneriaceae genera and 355 species, including key samples from Sri Lanka analysed here for the first time. We generated molecular phylogenies based on four plastid gene regions (ndhF, matK, rps16 and trnL-F), obtained fossil-calibrated trees, and reconstructed ancestral areas and dispersal routes using Bayesian methods. Our results confirm the origin for the family in the Early Palaeocene (67. Ma) in the region of present day Central America & Andean South America, and that diversity in the Old World originated from a longdistance dispersal event from South America around 59 Ma, most likely to the Indian plate, which was an island at the time. This lineage then dispersed to Malesia and later East Asia, which would ultimately become a major centre of diversity and source of many dispersals to other regions. Our results thus highlight the Indian plate as a likely key player in the early diversification of Old World Gesneriaceae, even though it is now more diverse elsewhere, and hence offer novel insights into this plant family’s dispersal routes and areas of diversification in the Old World.