Social media data tend to cluster around events and themes. Local newsworthy events, sports team victories or defeats, abnormal weather patterns and globally trending topics all influence the content of online discussion. The automated discovery of these underlying themes from corpora of text is of interest to numerous academic fields as well as to law enforcement organizations and commercial users. One useful class of tools to deal with such problems are topic models, which attempt to recover latent groups of word associations from the text. However, it is clear that these topics may also exhibit patterns in both time and space. The recovery of such patterns complements the analysis of the text itself and in many cases provides additional context. In this work we describe two methods for mining interesting spatio-temporal dynamics and relations among topics, one that compares the topic distributions as histograms in space and time and another that models topics over time as temporal or spatio-temporal Hawkes process with exponential trigger functions. Both methods may be used to discover topics with abnormal distributions in space and time. The second method also allows for self-exciting topics and can recover intertopic relationships (excitation or inhibition) in both time and space. We apply these methods to a geo-tagged Twitter dataset and provide analysis and discussion of the results.