The notion of spontaneous symmetry breaking has been used to describe phase
transitions in a variety of physical systems. In crystalline solids, the
breaking of certain symmetries, such as mirror symmetry, is difficult to detect
unambiguously. Using 1$T$-TaS$_2$, we demonstrate here that
rotational-anisotropy second harmonic generation (RA-SHG) is not only a
sensitive technique for the detection of broken mirror symmetry, but also that
it can differentiate between mirror symmetry-broken structures of opposite
planar chirality. We also show that our analysis is applicable to a wide class
of different materials with mirror symmetry-breaking transitions. Lastly, we
find evidence for bulk mirror symmetry-breaking in the incommensurate charge
density wave phase of 1$T$-TaS$_2$. Our results pave the way for RA-SHG to
probe candidate materials where broken mirror symmetry may play a pivotal role.