- Johnson, Kara L;
- Qi, Zhijie;
- Yan, Zhangming;
- Wen, Xingzhao;
- Nguyen, Tri C;
- Zaleta-Rivera, Kathia;
- Chen, Chien-Ju;
- Fan, Xiaochen;
- Sriram, Kiran;
- Wan, Xueyi;
- Chen, Zhen Bouman;
- Zhong, Sheng
We describe PROPER-seq (protein-protein interaction sequencing) to map protein-protein interactions (PPIs) en masse. PROPER-seq first converts transcriptomes of input cells into RNA-barcoded protein libraries, in which all interacting protein pairs are captured through nucleotide barcode ligation, recorded as chimeric DNA sequences, and decoded at once by sequencing and mapping. We applied PROPER-seq to human embryonic kidney cells, T lymphocytes, and endothelial cells and identified 210,518 human PPIs (collected in the PROPER v.1.0 database). Among these, 1,365 and 2,480 PPIs are supported by published co-immunoprecipitation (coIP) and affinity purification-mass spectrometry (AP-MS) data, 17,638 PPIs are predicted by the prePPI algorithm without previous experimental validation, and 100 PPIs overlap human synthetic lethal gene pairs. In addition, four previously uncharacterized interaction partners with poly(ADP-ribose) polymerase 1 (PARP1) (a critical protein in DNA repair) known as XPO1, MATR3, IPO5, and LEO1 are validated in vivo. PROPER-seq presents a time-effective technology to map PPIs at the transcriptome scale, and PROPER v.1.0 provides a rich resource for studying PPIs.