The effect of material properties and surface roughness on the contribution of asperities and sphere bulk displacements to the total displacement of a rough spherical contact is investigated. A dimensionless transition load, above which the contribution of the bulk displacement exceeds the contribution of the asperities displacement, is found as a function of the plasticity index and dimensionless critical interference of the sphere bulk. A criterion is proposed for evaluating the importance of surface roughness in calculating the displacement of a rough spherical contact. Some experimental results with a spherical micro-contact are presented to verify the model.