In this work, we analyzed the effects of mineral scaling on the performance of a 3D interfacial solar evaporator, with a focus on the cations relevant to lithium recovery from brackish water. The field has been rapidly moving toward resource recovery applications from brines with higher cation concentrations. However, the potential complications caused by common minerals in these brines other than NaCl have been largely overlooked. Therefore, in this study, we thoroughly examined the effects of two common cations (calcium and magnesium) on the long-term solar evaporation performance of a 3D graphene oxide stalk. The 3D stalk can achieve an evaporation flux as high as 17.8 kg m-2 h-1 under one-sun illumination, and accumulation of NaCl on the stalk surface has no impact. However, the presence of CaCl2 and MgCl2 significantly reduces the evaporative flux even in solutions lacking scale-forming anions. A close examination of scale formation during long-term evaporation experiments revealed that CaCl2 and MgCl2 tend to precipitate out within the stalk, thus blocking water transport through the stalk and significantly dropping the evaporation rates. These findings imply that research attention is needed to modify and optimize the internal water transport channels for 3D evaporators. Additionally, we emphasize the importance of testing realistic mixtures─including prominent divalent cations─ and testing long-term operations in interfacial solar evaporation research and investigating approaches to mitigate the negative impacts of divalent cations.