HIV-associated neurocognitive disorders (HAND) persist in the era of effective combined antiretroviral therapy (cART). A large body of literature suggests that mitochondrial dysfunction is a prospective etiology of HAND in the cART era. While viral load is often suppressed and the immune system remains intact in HIV+ patients on cART, evidence suggests that the central nervous system (CNS) acts as a reservoir for virus and low-level expression of viral proteins, which interact with mitochondria. In particular, the HIV proteins glycoprotein 120, transactivator of transcription, viral protein R, and negative factor have each been linked to mitochondrial dysfunction in the brain. Moreover, cART drugs have also been shown to have detrimental effects on mitochondrial function. Here, we review the evidence generated from human studies, animal models, and in vitro models that support a role for HIV proteins and/or cART drugs in altered production of adenosine triphosphate, mitochondrial dynamics, mitophagy, calcium signaling and apoptosis, oxidative stress, mitochondrial biogenesis, and immunometabolism in the CNS. When insightful, evidence of HIV or cART-induced mitochondrial dysfunction in the peripheral nervous system or other cell types is discussed. Lastly, therapeutic approaches to targeting mitochondrial dysfunction have been summarized with the aim of guiding new investigations and providing hope that mitochondrial-based drugs may provide relief for those suffering with HAND.