Regional cerebral blood flow (CBF) has a complex relationship with cognitive functioning such that cognitively unimpaired individuals at risk for Alzheimers disease (AD) may show regional hyperperfusion, while those with cognitive impairment typically show hypoperfusion. Diabetes and word-list intrusion errors are both linked to greater risk of cognitive decline and dementia. Our study examined associations between fasting blood glucose, word-list intrusion errors, and regional CBF. 113 cognitively unimpaired older adults had arterial spin labeling MRI to measure CBF in a priori AD vulnerable regions: medial temporal lobe (MTL), inferior parietal lobe (IPL), precuneus, medial orbitofrontal cortex (mOFC), and pericalcarine (control region). Hierarchical linear regressions, adjusting for demographics, vascular risk, and reference CBF region, examined the main effect of blood glucose on regional CBF as well as whether intrusions moderated this relationship. Higher glucose was associated with higher CBF in the precuneus (β = .134, 95% CI = .007 to .261, p = .039), IPL (β = .173, 95% CI = .072 to .276, p = .001), and mOFC (β = .182, 95% CI = .047 to .320, p = .009). There was no main effect of intrusions on CBF across regions. However, the glucose x intrusions interaction was significant such that having higher glucose levels and more intrusion errors was associated with reduced CBF in the MTL (β = -.186, 95% CI = -.334 to -.040, p = .013) and precuneus (β = -.146, 95% CI = -.273 to -.022, p = .022). These findings may reflect early neurovascular dysregulation, whereby higher CBF is needed to maintain unimpaired cognition in individuals with higher glucose levels. However, lower regional CBF in unimpaired participants with both higher glucose and more intrusions suggests a failure in this early compensatory mechanism that may signal a decrease in neural activity in AD vulnerable regions.