Advancements in molecular technologies have provided new platforms that are being increasingly adopted for use in the clinical microbiology laboratory. Among these, microarray methods are particularly well suited for diagnostics as they allow multiplexing, or the ability to test for multiple targets simultaneously from the same specimen. Microarray technologies commonly used for the detection and identification of microbial targets include solid-state microarrays, electronic microarrays and bead suspension microarrays. Microarray methods have been applied to microbial detection, genotyping and antimicrobial resistance gene detection. Microarrays can offer a panel approach to diagnose specific patient presentations, such as respiratory or gastrointestinal infections, and can discriminate isolates by genotype for tracking epidemiology and outbreak investigations. And, as more information has become available on specific genes and pathways involved in antimicrobial resistance, we are beginning to be able to predict susceptibility patterns based on sequence detection for particular organisms. With further advances in automated microarray processing methods and genotype-phenotype prediction algorithms, these tests will become even more useful as an adjunct or replacement for conventional antimicrobial susceptibility testing, allowing for more rapid selection of targeted therapy for infectious diseases.