- Hales, Erin N;
- Habib, Hadi;
- Favro, Gianna;
- Katzman, Scott;
- Sakai, R Russell;
- Marquardt, Sabin;
- Bordbari, Matthew H;
- Ming‐Whitfield, Brittni;
- Peterson, Janel;
- Dahlgren, Anna R;
- Rivas, Victor;
- Ramirez, Carolina Alanis;
- Peng, Sichong;
- Donnelly, Callum G;
- Dizmang, Bobbi‐Sue;
- Kallenberg, Angelica;
- Grahn, Robert;
- Miller, Andrew D;
- Woolard, Kevin;
- Moeller, Benjamin;
- Puschner, Birgit;
- Finno, Carrie J
Background
Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is an inherited neurodegenerative disorder associated with a vitamin E deficiency within the first year of life. Vitamin E consists of 8 isoforms metabolized by the CYP4F2 enzyme. No antemortem diagnostic test currently exists for eNAD/EDM.Hypothesis/objectives
Based on the association of α-tocopherol deficiency with the development of eNAD/EDM, we hypothesized that the rate of α-tocopherol, but not γ-tocopherol or tocotrienol metabolism, would be increased in eNAD/EDM-affected horses.Animals
Vitamin E metabolism: Proof of concept (POC) study; eNAD/EDM-affected (n = 5) and control (n = 6) horses. Validation study: eNAD/EDM-affected Quarter Horses (QHs; n = 6), cervical vertebral compressive myelopathy affected (n = 6) horses and control (n = 29) horses. CYP4F2 expression and copy number: eNAD/EDM-affected (n = 12) and age- and sex-matched control (n = 11-12) horses.Methods
The rates of α-tocopherol/tocotrienol and γ-tocopherol/tocotrienol metabolism were assessed in equine serum (POC and validation) and urine (POC only) using liquid chromatography tandem mass spectrometry (LC-MS/MS). Quantitative reverse-transcriptase PCR (qRT-PCR) and droplet digital (dd)-PCR were used to assay expression and genomic copy number of a CYP4F2 equine ortholog.Results
Metabolic rate of α-tocopherol was increased in eNAD/EDM horses (POC,P < .0001; validation, P = .03), with no difference in the metabolic rate of γ-tocopherol. Horses with eNAD/EDM had increased expression of the CYP4F2 equine orthologue (P = .02) but no differences in copy number.Conclusions and clinical importance
Increased α-tocopherol metabolism in eNAD/EDM-affected QHs provides novel insight into alterations in vitamin E processing in eNAD/EDM and highlights the need for high-dose supplementation to prevent the clinical phenotype in genetically susceptible horses.