Background and aims
Immunotherapy with programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade has shown low response rates in liver cancer patients, with the underlying mechanisms unclear. To decipher a specific impact of the liver microenvironment, we compared the effects of anti-PD-L1 antibody (αPD-L1) blockade on the same tumor grown s.c. or in the liver.Approach and results
We generated s.c. tumors in mice by inoculating MC38 colorectal cancer (CRC) cells under the skin and metastatic liver tumors by portal vein or splenic injection of CRC cells. Tumor-bearing mice were treated by i.p. injection of αPD-L1, polyinosinic:polycytidylic acid (poly[I:C]), or both. αPD-L1 monotherapy significantly suppressed s.c. tumor growth, but showed no effect on metastatic liver tumors. However, the combination of αPD-L1 with poly(I:C), an innate immunity-stimulating reagent, robustly inhibited tumor progression in liver. The combination therapy effectively down-regulated myeloid-derived suppressor cells (MDSCs), but up-regulated ratios of M1/M2 macrophages, CD8/CD4, and CD8/regulatory T (Treg) cells infiltrated into liver tumors and whole liver. A group of long-lasting T-bet+ Eomes- PD-1- cytotoxic T cells was maintained in the combo-treated liver, leading to resistance to tumor recurrence. Depleting macrophages or blocking type Ⅰ interferon signaling abrogated the synergistic antitumor effect of αPD-L1 and poly(I:C), indicating a requirement of boosting innate immunity for optimized activation of cytotoxic T cells by PD-1/PD-L1 blockade.Conclusions
The poor response of liver cancers to αPD-L1 therapy is largely attributable to a unique hepatic immunotolerant microenvironment, independent of tumor origins or types. The success of a combinatorial immunotherapy relies on coordinated inhibition or activation of various innate and adaptive immune cell activities.