- Leng, Feng;
- Huang, Jiajia;
- Wu, Liufeng;
- Zhang, Jianchao;
- Lin, Xinxin;
- Deng, Ruhuan;
- Zhu, Jinhang;
- Li, Zhen;
- Li, Zhenghao;
- Wang, Yimeng;
- Zhang, Han;
- Lu, Desheng;
- Kipps, Thomas;
- Zhang, Suping
Breast cancer stem-like cells (CSCs) are enriched following treatment with chemotherapy, and posited as having a high level of plasticity and enhanced tumor-initiation capacity, which can enable cancer relapse. Here, we show that such features are shared by breast cancer (BCA) cells that express receptor tyrosine kinase-like orphan receptor (ROR2), which is expressed primarily during embryogenesis and by various cancers. We find that Wnt5a can induce ROR2 homooligomerization to activate noncanonical Wnt signaling and enhance tumor-initiation capacity of BCA cells. Molecular analysis reveals that the cysteine-rich domain and transmembrane domain are required for ROR2 homooligomerization to activate ROR2. Treatment with a newly generated monoclonal antibody (mAb) specific for ROR2 can block Wnt5a-induced ROR2 homooligomerization, ROR2-dependent noncanonical Wnt signaling, and impair the capacity of BCA patient-derived xenografts to initiate tumor in immune-deficient mice. Collectively, these results indicate that targeting ROR2 (e.g., using mAb) suppresses BCA stemness and, thereby, may prevent BCA relapse.