We show that resonant coupling and entanglement between a mechanical resonator and Majorana bound states can be achieved via spin currents in a 1D quantum wire with strong spin-orbit interactions. The bound states induced by vibrating and stationary magnets can hybridize, thus resulting in spin-current induced 4π-periodic torques, as a function of the relative field angle, acting on the resonator. We study the feasibility of detecting and manipulating Majorana bound states with the use of magnetic resonance force microscopy techniques.