In a transgenic model of multi-stage squamous carcinogenesis induced by human papillomavirus (HPV) oncogenes, infiltrating CD4+ T cells can be detected in both premalignant and malignant lesions. The lymph nodes that drain sites of epidermal neoplasia contain activated CD4+ T cells predominantly reactive toward Staphylococcal bacterial antigens. HPV16 mice deficient in CD4+ T cells were found to have delayed neoplastic progression and a lower incidence of tumors. This delay in carcinogenesis is marked by decreased infiltration of neutrophils, and reduced activity of matrix metalloproteinase-9, an important cofactor for tumor progression in this model. The data reveal an unexpected capability of CD4 T cells, whereby, proinflammatory CD4+ T cells, apparently responding to bacterial infection of dysplastic skin lesions, can inadvertently enhance neoplastic progression to invasive cancer.