- Wang, Qiao;
- Li, Qinghe;
- Liu, Tao;
- Chang, Guobin;
- Sun, Zhihao;
- Gao, Zhao;
- Wang, Fei;
- Zhou, Huaijun;
- Liu, Ranran;
- Zheng, Maiqing;
- Cui, Huanxian;
- Chen, Guohong;
- Li, Hua;
- Yuan, Xiaoya;
- Wen, Jie;
- Peng, Daxin;
- Zhao, Guiping
PA-N155 and PA-N182 proteins were translated from the 11th and 13th start codon AUG of the RNA polymerase acidic protein (PA) mRNA of H5N1 influenza A virus (IAV), which plays an important role in viral replication. Little is known about the interactions between PA-N155 and PA-N182 and the host proteins. This study investigated the interaction landscape of PA-N155 and PA-N182 of H5N1 IAV in chicken cells while their interacting complexes were captured by immunoprecipitation and analyzed by mass spectrometry. A total of 491 (PA-N155) and 302 (PA-N182) interacting proteins were identified. Gene ontology and pathway enrichment analyses showed that proteins of the two interactomes were enriched in RNA processing, viral processing and protein transport, and proteins related to signaling pathways of proteasome, ribosome, and aminoacy1-tRNA biosynthesis were significantly enriched, suggesting their potential roles in H5N1 IAV infection. Comparative analysis of the interactome of PA, PA-N155, and PA-N182 identified UBA52 as a conserved host factor that interacted with all three viral proteins. UBA52 is a fusion protein consisting of ubiquitin at the N terminus and ribosomal protein L40 at the C terminus. Knockdown of UBA52 significantly decreased the titer of H5N1 IAV in chicken cells and was accompanied with attenuated production of proinflammatory cytokines. Our analyses of the influenza-host protein interactomes identified UBA52 as a PA interaction protein for virus replication.