Single phonon excitations are sensitive probes of light-dark matter in the keV-GeV mass window. For anisotropic target materials, the signal depends on the direction of the incoming dark matter wind and exhibits a daily modulation. We discuss in detail the various sources of anisotropy and carry out a comparative study of 26 crystal targets, focused on sub-MeV dark matter benchmarks. We compute the modulation reach for the most promising targets, corresponding to the cross section where the daily modulation can be observed for a given exposure, which allows us to combine the strength of dark matter-phonon couplings and the amplitude of daily modulation. We highlight Al2O3 (sapphire), CaWO4, and h-BN (hexagonal boron nitride) as the best polar materials for recovering a daily modulation signal, which feature O(1-100)% variations of detection rates throughout the day, depending on the dark matter mass and interaction. The directional nature of single phonon excitations offers a useful handle to mitigate backgrounds, which is crucial for fully realizing the discovery potential of near future experiments.