Maternal hypercholesterolemia during pregnancy is associated with enhanced fatty streak formation in human fetuses and faster progression of atherosclerosis during childhood even under normocholesterolemic conditions. A causal role of maternal hypercholesterolemia in lesion formation during fetal development has previously been established in rabbits. The same experimental model is now used to establish that maternal hypercholesterolemia or ensuing pathogenic events in fetal arteries enhance atherogenesis later in life. Five groups of rabbit mothers were fed chow, cholesterol-enriched chow, or cholesterol-enriched chow plus 1000 IU vitamin E, 3% cholestyramine, or both during pregnancy. Offspring of all groups (n=136) were fed a mildly hypercholesterolemic diet for up to a year and had similar cholesterol levels. Aortic lesion sizes and lipid peroxidation products in plasma and lesions in offspring were determined at birth, 6 months, or 12 months. Lesion progression in offspring of hypercholesterolemic mothers was greater than in all other groups. At each time point, offspring of hypercholesterolemic mothers had 1.5- to 3-fold larger lesions than offspring of normocholesterolemic mothers (P<0.01), with the greatest absolute differences at 12 months. Maternal treatment reduced lesions by 19% to 53%, compared with offspring of untreated hypercholesterolemic mothers (P<0.01), with the greatest effect in the vitamin E groups. At 12 months, lesions in offspring of all vitamin E and cholestyramine-treated mothers were similar to those of normocholesterolemic mothers. Lipid peroxidation end-products in lesions and plasma showed analogous differences between groups as lesions (P<0.01). Thus, pathogenic programming in utero increases the susceptibility to atherogenic risk factors later in life and maternal intervention with cholesterol-lowering drugs or antioxidants reduce postnatal lipid peroxidation and atherosclerosis in their offspring.