- Conley, Andrew;
- Minciacchi, Valentina R;
- Lee, Dhong Hyun;
- Knudsen, Beatrice S;
- Karlan, Beth Y;
- Citrigno, Luigi;
- Viglietto, Giuseppe;
- Tewari, Muneesh;
- Freeman, Michael R;
- Demichelis, Francesca;
- Di Vizio, Dolores
Extracellular vesicles (EVs) contain a wide range of RNA types with a reported prevalence of non-coding RNA. To date a comprehensive characterization of the protein coding transcripts in EVs is still lacking. We performed RNA-Sequencing (RNA-Seq) of 2 EV populations and identified a small fraction of transcripts that were expressed at significantly different levels in large oncosomes and exosomes, suggesting they may mediate specialized functions. However, these 2 EV populations exhibited a common mRNA signature that, in comparison to their donor cells, was significantly enriched in mRNAs encoding E2F transcriptional targets and histone proteins. These mRNAs are primarily expressed in the S-phase of the cell cycle, suggesting that they may be packaged into EVs during S-phase. In silico analysis using subcellular compartment transcriptome data from the ENCODE cell line compendium revealed that EV mRNAs originate from a cytoplasmic RNA pool. The EV signature was independently identified in plasma of patients with breast cancer by RNA-Seq. Furthermore, several transcripts differentially expressed in EVs from patients versus controls mirrored differential expression between normal and breast cancer tissues. Altogether, this largest high-throughput profiling of EV mRNA demonstrates that EVs carry tumor-specific alterations and can be interrogated as a source of cancer-derived cargo.