Background
Quantitative ventricular volumetry and function are important in the management of congenital heart disease (CHD). Ferumoxytol-enhanced (FE) 4D multiphase, steady state imaging with contrast enhancement (MUSIC) enables high-resolution, 3D cardiac phase-resolved magnetic resonance imaging (MRI) of the beating heart and extracardiac vessels in a single acquisition and without concerns about renal impairment. We aim to evaluate the semi-automatic quantification of ventricular volumetry and function of 4D MUSIC MRI using 2D and 3D software platforms.Methods
This HIPAA-compliant and IRB-approved study prospectively recruited 50 children with CHD (3 days to 18 years) who underwent 4D MUSIC MRI at 3.0T between 2013-2017 for clinical indications. Each patient was either intubated in the neonatal intensive care unit (NICU) or underwent general anesthesia at MRI suite. For 2D analysis, we reformatted MUSIC images in Digital Imaging and Communications in Medicine (DICOM) format into ventricular short-axis slices with zero interslice gap. For 3D analysis, we imported DICOMs into a commercially available 3D software platform. Using semi-automatic thresholding, we quantified biventricular volume and ejection fraction (EF). We assessed the bias between MUSIC-derived 2D vs. 3D measurements and correlation between MUSIC vs. conventional 2D balanced steady-state free precession (bSSFP) cine images. We evaluated intra- and inter-observer agreement.Results
There was a high degree of correlation between MUSIC-derived volumetric and functional measurements using 2D vs. 3D software (r=0.99, P<0.001). Volumes derived using 3D software platforms were larger than 2D by 0.2 to 2.0 mL/m2 whereas EF measurements were higher by 1.2-3.0%. MUSIC volumetric and functional measures derived from 2D and 3D software platforms corresponded highly with those derived from multi-slice SSFP cine images (r=0.99, P<0.001). The mean difference in volume for reformatted 4D MUSIC relative to bSSFP cine was 1.5 to 3.9 mL/m2. Intra- and inter-observer reliability was excellent.Conclusions
Accurate and reliable ventricular volumetry and function can be derived from FE 4D MUSIC MRI studies using commercially available 2D and 3D software platforms. If fully validated in multicenter studies, the FE 4D-MUSIC pulse sequence may supercede conventional multislice 2D cine cardiovascular MRI acquisition protocols for functional evaluation of children with complex CHD.