Neural crest cells are a transient stem-like cell population that forms in the dorsal neural tube of vertebrate embryos and then migrates to various locations to differentiate into diverse derivatives such as craniofacial bone, cartilage, and the enteric and peripheral nervous systems. The current dogma of neural crest cell development suggests that there is a specific hierarchical gene regulatory network (GRN) that controls the induction, specification, and differentiation of these cells at specific developmental times. Our lab has identified that a marker of differentiated neurons, Tubulin Beta-III (TUBB3), is expressed in premigratory neural crest cells. TUBB3 has previously been identified as a major constituent of microtubules and is required for the proper guidance and maintenance of axons during development. Using the model organism, Gallus gallus, we have characterized the spatiotemporal localization of TUBB3 in early stages of development. Here we show TUBB3 is expressed in the developing neural plate, is upregulated in the pre-migratory cranial neural crest prior to cell delamination and migration, and it is maintained or upregulated in neurons in later developmental stages. We believe that TUBB3 likely has a role in early neural crest formation and migration separate from its role in neurogenesis.