- Krumpe, M;
- Miyaji, T;
- Brunner, H;
- Hanami, H;
- Ishigaki, T;
- Takagi, T;
- Markowitz, AG;
- Goto, T;
- Malkan, MA;
- Matsuhara, H;
- Pearson, C;
- Ueda, Y;
- Wada, T
We present data products from the 300 ks Chandra survey in the AKARI North
Ecliptic Pole (NEP) deep field. This field has a unique set of 9-band infrared
photometry covering 2-24 micron from the AKARI Infrared Camera, including
mid-infrared (MIR) bands not covered by Spitzer. The survey is one of the
deepest ever achieved at ~15 micron, and is by far the widest among those with
similar depths in the MIR. This makes this field unique for the MIR-selection
of AGN at z~1. We design a source detection procedure, which performs joint
Maximum Likelihood PSF fits on all of our 15 mosaicked Chandra pointings
covering an area of 0.34 square degree. The procedure has been highly optimized
and tested by simulations. We provide a point source catalog with photometry
and Bayesian-based 90 per cent confidence upper limits in the 0.5-7, 0.5-2,
2-7, 2-4, and 4-7 keV bands. The catalog contains 457 X-ray sources and the
spurious fraction is estimated to be ~1.7 per cent. Sensitivity and 90 per cent
confidence upper flux limits maps in all bands are provided as well. We search
for optical MIR counterparts in the central 0.25 square degree, where deep
Subaru Suprime-Cam multiband images exist. Among the 377 X-ray sources detected
there, ~80 per cent have optical counterparts and ~60 per cent also have AKARI
mid-IR counterparts. We cross-match our X-ray sources with MIR-selected AGN
from Hanami et al. (2012). Around 30 per cent of all AGN that have MID-IR SEDs
purely explainable by AGN activity are strong Compton-thick AGN candidates.