It is a classic result in lattice theory that a poset is a complete lattice iff it can be realized as fixpoints of a closure operator on a powerset. Dragalin [9,10] observed that a poset is a locale (complete Heyting algebra) iff it can be realized as fixpoints of a nucleus on the locale of upsets of a poset. He also showed how to generate a nucleus on upsets by adding a structure of “paths” to a poset, forming what we call a Dragalin frame. This allowed Dragalin to introduce a semantics for intuitionistic logic that generalizes Beth and Kripke semantics. He proved that every spatial locale (locale of open sets of a topological space) can be realized as fixpoints of the nucleus generated by a Dragalin frame. In this paper, we strengthen Dragalin’s result and prove that every locale—not only spatial locales—can be realized as fixpoints of the nucleus generated by a Dragalin frame. In fact, we prove the stronger result that for every nucleus on the upsets of a poset, there is a Dragalin frame based on that poset that generates the given nucleus. We then compare Dragalin’s approach to generating nuclei with the relational approach of Fairtlough and Mendler [11], based on what we call FM-frames. Surprisingly, every Dragalin frame can be turned into an equivalent FM-frame, albeit on a different poset. Thus, every locale can be realized as fixpoints of the nucleus generated by an FM-frame. Finally, we consider the relational approach of Goldblatt [13] and characterize the locales that can be realized using Goldblatt frames.